
 
 

 
 

	
 

	
	

	
	

	
	

Feature	
The	Case	for	Causal	AI	

By Sema K. Sgaier, Vincent Huang & Grace Charles 
	
 

 
 
 
 
 
 
 

Stanford	Social	Innovation	Review	
Summer	2020 

	
	

Copyright	Ó	2020	by	Leland	Stanford	Jr.	University	
All	Rights	Reserved	

	
 
 
 
 
 
 
 
 
 
 

Stanford Social Innovation Review 
www.ssir.org 

Email: editor@ssir.org 



50 Stanford Social Innovation Review / Summer 2020

patients who had more chronic illnesses 
than white patients were not flagged as 
needing extra care. 

What went wrong? The algorithm 
used insurance claims data to predict 
patients’ future health needs based on 
their recent health costs. But the algo-
rithm’s designers had not taken into 
account that health-care spending on 
black Americans is typically lower than 
on white Americans with similar health 
conditions, for reasons unrelated to how 
sick they are—such as barriers to health-

care access, inadequate health care, or lack of insurance. Using 
health-care costs as a proxy for illness led the predictive algorithm 
to make recommendations that were accurate for white patients—
lower health-care spending was the consequence of fewer health 
conditions—but perpetuated racial biases in care for black patients. 
The researchers notified the manufacturer, which ran tests using 
its own data, confirmed the problem, and collaborated with the 
researchers to remove the bias from the algorithm. 

This story illustrates one of the perils of certain types of AI. No 
matter how sophisticated, predictive algorithms and their users can 
fall into the trap of equating correlation with causation—in other 
words, of thinking that because event X precedes event Y, X must 
be the cause of Y. A predictive model is useful for establishing the 
correlation between an event and an outcome. It says, “When we 
observe X, we can predict that Y will occur.” But this is not the same 
as showing that Y occurs because of X. In the case of the health-care 
algorithm, higher rates of illness (X) were correctly correlated with 
higher health-care costs (Y) for white patients. X caused Y, and it 
was therefore accurate to use health-care costs as a predictor of 
future illness and health-care needs. But for black patients, higher 
rates of illness did not in general lead to higher costs, and the algo-
rithm would not accurately predict their future health-care needs. 
There was correlation but not causation.

uch of artificial intelligence (AI) in common use is 
dedicated to predicting people’s behavior. It tries 
to anticipate your next purchase, your next mouse-
click, your next job move. But such techniques can 
run into problems when they are used to analyze 
data for health and development programs. If we 

do not know the root causes of behavior, we could easily make poor 
decisions and support ineffective and prejudicial policies. 

AI, for example, has made it possible for health-care systems to 
predict which patients are likely to have the most complex medical 
needs. In the United States, risk-prediction software is being applied 
to roughly 200 million people to anticipate which patients would ben-
efit from extra medical care now, based on how much they are likely 
to cost the health-care system in the future. It employs predictive 
machine learning, a class of self-adaptive algorithms that improve 
their accuracy as they are provided new data. But as health researcher 
Ziad Obermeyer and his colleagues showed in a recent article in Science
magazine, this particular tool had an unintended consequence: black 

Using artificial intelligence to predict behavior can lead to devastating policy mistakes. Health and 
development programs must learn to apply causal models that better explain why people behave 

the way they do to help identify the most e�ective levers for change.
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This matters as the world increasingly turns to AI to help solve 
pressing health and development challenges. Relying solely on pre-
dictive models of AI in areas as diverse as health care, justice, and 
agriculture risks devastating consequences when correlations are mis-
taken for causation. Therefore, it is imperative that decision makers 
also consider another AI approach—causal AI, which can help iden-
tify the precise relationships of cause and effect. Identifying the root 
causes of outcomes is not causal AI’s only advantage; it also makes it 
possible to model interventions that can change those outcomes, by 
using causal AI algorithms to ask what-if questions. For example, if 
a specific training program is implemented to improve teacher com-
petency, by how much should we expect student math test scores to 
improve? Simulating scenarios to evaluate and compare the potential 
effect of an intervention (or group of interventions) on an outcome 
avoids the time and expense of lengthy tests in the field. 

Certainly, predictive AI algorithms have an important role to play 
if applied and used correctly. A good example is precision agricul-
ture, which uses predictive AI to process data from satellite imagery 
and sensors to help farmers predict crop yields, detect disease and 
weeds, and recognize different species of plants. But being able to 
predict an outcome is not the same as understanding what actually 
causes it. Predicting that a farmer’s crop yield will be lower this year 
is one thing; understanding why makes it possible to take steps to 
increase the harvest. 

Another challenge with using only predictive models is a funda-
mental lack of knowledge about why they make particular predictions 
in the first place. This is a problem with deep learning—the kind of 
predictive AI that’s at work in precision agriculture. Deep learning 
was inspired by how human brain cells are organized (in “layers”) 
and how they communicate with each other (taking input signals 
from cells of one layer, transforming the signals, and outputting the 
transformed signals to cells of another layer). Unlike commonly used 
methods for predicting outcomes—such as regression, a traditional 
statistical technique that maps the relationships between variables to 
the predicted outcome with a single best mathematical formula—deep 
learning can map variables to outcomes with much more complex 
relationships between them. By combining multiple layers between 
the input variables and outcomes, deep learning algorithms can learn 
input-output relationships far more complex than a single mathemati-
cal formula and use them to predict outcomes. However, the links and 
intermediaries between variables are “black boxed,” meaning that 
the users—and even the creators—of the algorithms cannot easily 
discern how the variables relate to the outcome and to each other. 
This means it is often impossible to know which input features deep 
learning models have used to make their predictions. 

This opacity is unacceptable when dealing with the trajectory 
of people’s lives, such as in the US criminal justice system. In 2016, 
2.3 million American adults, or one in 111, were in prison, housed at 
great cost to federal and state governments. Courts throughout the 
United States have introduced “recidivism scores” in an attempt to 
lower incarceration costs by reducing the number of inmates without 
increasing crime. The recidivism score is a single number reached 
through a predictive algorithm that estimates the likelihood that a 
person convicted of a crime will reoffend. In theory, the score makes 
it possible for a judge to focus on incarcerating those more likely to 
commit additional crimes, and it should even help to remove potential 

bias in sentencing. But recidivism scores are inherently faulty because 
they are based on risk-assessment tools that pick up statistical corre-
lations rather than causations. For example, low income is correlated 
with crime, but that does not mean it causes crime. Yet people from 
low-income households may automatically be assigned a high recid-
ivism score, and as a result they are more likely to be sentenced to 
prison. Fixing the criminal justice system requires a focus on under-
standing the causes of crime, not merely its correlates.

A closer look at causal AI will show how it can open up the black 
box within which purely predictive models of AI operate. Causal AI 
can move beyond correlation to highlight the precise relationships 
between causes and effects. 

RANDOMIZED CONTROLLED TRIALS

The importance of testing causality is not new in either the health or 
development sectors. A straightforward way to do it is to conduct an 
intervention in people randomly assigned to one population group, 
known as the treatment group, and conduct no intervention in an 
otherwise identical group, known as the control group. By comparing 
the results between the two groups, it’s possible to isolate the effect 
of the intervention. In clinical studies this is known as a randomized 
controlled trial, and in marketing research it’s called A/B testing.

Development economists Michael Kremer, Abhijit Banerjee, and 
Esther Duflo were awarded the Nobel Prize in Economics in 2019 for 
spearheading the application of randomized controlled trials to iden-
tify root causes of development issues and to design solutions. Such 
trials have overturned some conventional wisdom about causality. 
For example, numerous observational studies had identified associ-
ations between vitamin D deficiency and increased risks of diabetes, 
hypertension, cardiovascular disease, and cancer. But randomized 
controlled trials demonstrated that vitamin D supplements do not 
reduce the risks of these conditions—they have not found a causal 
link between vitamin D supplements and health outcomes.

Randomized controlled trials, however, have limitations. Large 
groups of individuals are required to ensure that the results aren’t 
biased or affected by coincidental, outlier characteristics such as age, 
sex, health status, or educational level. This tends to make such trials 
extremely expensive (in the millions of dollars) and time-consuming 
(they can take years to conduct). Furthermore, randomized controlled 
trials can test the effect of only one or at most a few bundled inter-
ventions at a time, despite the fact that health and social outcomes 
are complex, with many underlying drivers. Finally, they can predict 
only whether an intervention will cause an effect on a typical member 
of the treatment group, not on a specific individual. 

This is where causal AI comes in. It offers new opportunities to 
test causality in individuals and population groups faster and more 
efficiently, along with the ability to unravel the underlying com-
plexity. It allows researchers and program designers to simulate an 
intervention and infer causality by relying on already available data. 
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variables influence each other, as well as the extent of their influ-
ence. The advantage of this approach is that, unlike in a structural 
equation model, these interactions do not need to be specified ahead 
of the test, making it a true discovery method. 

Although causal Bayesian networks require an abundance of 
data to capture the universe of possible variables, the potential 
of this approach is exciting for several reasons. It enables the 
data-driven discovery of multiple causal relationships at the same 
time. In the example of the antismoking ad campaign, a causal 
Bayesian network might show how advertising and the availabil-
ity of different quit-smoking aids each affected people’s behavior, 
or it might reveal how personal aspirations played a role. Equally 
important, unlike the black box of predictive AI, in the causal AI 
approach the relationships between the variables (exposure to ads, 
the availability of nicotine patches) and the outcome (stopping 
smoking) become visible to researchers, program implementers, 
and policy makers.

Causal graphic models also make it possible to simulate many 
possible interventions simultaneously. For example, what if different 
antismoking ads targeted different age groups or combined a general 
campaign with outreach by peer educators? They also allow for the 
incorporation of expert knowledge to counter the possible limita-
tions of a purely data-driven approach. Experts can, for instance, 
help to determine which variables should go into the model, they 
can place conditions on the model to improve its accuracy, and  
they can help understand results that are counterintuitive. 

EFFECTIVE APPLICATION 

The field of causal AI is evolving rapidly. As its potential becomes 
more apparent, researchers are putting it to work in fields as diverse 
as climate change and health, demonstrating its broad potential. 

Climate change | Causal AI techniques have been applied to cli-
mate change to understand whether and how humans are one of its  
contributing causes and what drives people’s beliefs about it. To inves-
tigate this question, British scientists used a causal AI technique called 
counterfactual event attribution in the potential outcomes framework 
to determine whether human-produced greenhouse gas emissions 
were an underlying cause of the deadly European heatwave of 2003, 
which by some estimates was responsible for more than 70,000 deaths. 
Using historical data, solar data, information on volcanic eruptions, 
and atmospheric data on greenhouse gases, aerosols, and ozone, the 
researchers simulated summer temperatures across Europe in 2003, 
with and without the impact of humans. They found that the heatwave 
was much more likely to occur when the model included activities 
such as air travel or electricity production than when those effects 
were excluded. Published in 2004, this was one of the first studies 
linking an extreme weather event to human activity, and it provided 
a powerful argument for reducing the greenhouse gases generated 
by such activity. The research has been cited by the United Nations’ 
Intergovernmental Panel on Climate Change. 

Causal AI has also identified the factors that lead people to become 
more polarized in their beliefs about climate change. Researchers 
surveyed participants from the United States and Australia and used 
Bayesian networks to model how different people responded to a 
range of messaging about climate change. They found that when pre-
sented with consensus information about climate change in an online  

TWO APPROACHES TO DISCOVERING CAUSALITY

There are two approaches to causal AI that are based on long-known 
principles: the potential outcomes framework and causal graph 
models. Both approaches make it possible to test the effects of a 
potential intervention using real-world data. What makes them AI 
are the powerful underlying algorithms used to reveal the causal 
patterns in large data sets. But they differ in the number of poten-
tial causes that they can test for. 

To understand the two methods and how they work—as well 
as their differences—consider the following hypothetical scenario: 
Researchers wanted to discover if an antismoking advertising cam-
paign persuaded people to quit, but there was no control group 
because the ads were released nationally. They only had a data set 
showing whether individuals were exposed to the ads, whether they 
gave up smoking, and information on their demographics and other 
health behaviors. Even without a control group, causal AI provides 
ways to infer causality.

The potential outcomes framework, proposed by statisticians Paul 
Rosenbaum and Donald Rubin in 1983, compares the outcome (quit-
ting smoking) of an individual who has been exposed to the cause of 
interest (the antismoking ad) with an inferred “potential outcome” 
of the same individual had he/she not been exposed. The challenge is 
of course that no data exists on nonexposure outcomes for a person 
who was in fact exposed to the campaign. So, for each individual who 
was exposed to the ad, the AI algorithms instead find an individual 
in the data set who was not exposed to the ad but who is identical in 
other significant respects (such as age, race, and education). In other 
words, an artificial control group is reverse engineered to mimic a 
randomized controlled trial. The limitation is that while it is able to 
solve the problem of having no control group, the potential outcomes 
framework can test the effect of only one prespecified intervention at 
a time—in this case, did the ad campaign lead to that person’s deci-
sion to quit smoking?

Causal graph models, by contrast, can do more than test a single 
pair of variables for their cause-and-effect relationship. They can be 
used as exploratory tools to map all the different causal pathways 
to an outcome of interest and show how different variables relate to 
each other. Applying a causal graph to our antismoking campaign 
might show that exposure to the ad in a pharmacy caused some 
people to stop smoking directly but others to buy nicotine patches, 
which in turn caused them to quit. 

There are several causal graph models. One widely used method 
is the structural equation model, in which researchers specify the 
variables that may interact and how they might do so, and the model 
then analyzes the data to reveal whether they actually do. While this 
model can test many such relationships in the data, the whole network 
of interaction between different variables needs to be specified using 
existing knowledge. The limitation of this model is that it tests only 
the linkages between the hypothesized variables: If the variables that 
actually cause the effect are not included among the specified ones, 
they won’t be evaluated against the other options. 

Another causal graph method is the causal Bayesian network, 
a term coined in the 1980s by computer scientist and philosopher 
Judea Pearl and named for 18th-century English statistician Thomas 
Bayes. This method estimates the relationships between all varia-
bles in a data set. It results in an intuitive visual map showing which  
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survey, Americans who actively distrusted climate scientists responded 
by updating their beliefs in the opposite direction of the information 
they were given. This causal framework provided a new way to esti-
mate the interconnected relationships between worldviews, scientific 
beliefs, and trust in scientists. Insights like this are important for 
shaping public perceptions of the need for action to combat climate 
change. Such results provide a framework for designing interventional 
messaging that takes into account how participants might react to 
information, based on their beliefs and backgrounds. 

Childhood diarrhea | Causal AI offers opportunities to address 
widespread and complex health problems where other approaches 
have not been successful. Childhood diarrhea is one example. This 
illness is the second biggest cause of death globally among children 
under 5 years of age. Many factors are associated with diarrhea, 
but it is extremely challenging to disentangle the causal pathways, 
both biological and structural, of diarrheal 
disease. This makes designing effective in-
terventions difficult. 

A study in Pakistan used data from a 
national survey of more than 110,000 indi-
viduals from more than 15,000 households. 
The survey included household, social, envi-
ronmental, and economic variables. When 
using multivariate regression, a traditional 
statistical technique, the researchers found 
12 household variables that were signifi-
cantly associated with diarrhea. However, 
these were not easy to interpret: For exam-
ple, one variable was the number of rooms 
in the household. By contrast, analyzing the same data set with a 
causal Bayesian network produced a network map revealing three 
variables that directly influenced diarrheal disease in children: the 
use of dry-pit latrines rather than toilets connected to drains; reliance 
on a water source other than piped, river, or stream water; and lack 
of formal trash collection. If incorporated societally or by national 
policy, these insights could lead to effective interventions to reduce 
childhood diarrheal disease. 

Maternal and newborn mortality rates | Mortality rates remain 
stubbornly high in many low-income countries for mothers and their 
newborns. Women delivering their babies at health-care facilities is 
critical for the survival and well-being of both mother and infant. 
Through a national incentive scheme that pays families to deliver their 
babies at facilities (300 Indian rupees [around $4] for the hospital de-
livery itself, and a further 300 Indian rupees if the mother has also 
made use of antenatal care), the Indian government has been able to 
rapidly improve the rate of institutional delivery. However, in many 
Indian states this trend has plateaued at about 80 percent. 

At Surgo Foundation, we tried to understand why women were 
not choosing institutional delivery and what kinds of additional 
interventions were needed in order to get them to do so. Our work 
has used a variety of techniques, including causal AI, to identify 
why some families still decide to deliver at home. In the state of 
Uttar Pradesh, with a population of more than 230 million people, 
we conducted several large-scale quantitative surveys to measure a 
large number of potential drivers of institutional delivery. We then 
used a causal Bayesian network to discover the variables driving this 

behavior and identify which were the most promising targets for a 
public health intervention. 

A broad set of variables was correlated with delivering in a health-
care facility, but causal AI identified the direct causes. To our surprise, 
and counter to common belief, the mother’s proximity to a health-care 
facility was not one of them—but access to transportation was. This 
suggested that the government should solve transportation issues 
rather than building more health facilities closer to families. We were 
also surprised to find that a belief about whether hospital deliveries 
were safer than home deliveries was far more important than beliefs 
about hospital cleanliness, staff competencies, and staff biases. Having 
a delivery plan also increased the likelihood of institutional delivery; 
so did the mother’s awareness of financial incentives, validating the 
impact of the government’s incentive scheme. Findings from this 
study are currently being used to model hypothetical scenarios and 

pilot an intervention in which frontline health workers help mothers 
in Uttar Pradesh develop detailed plans ahead of time for their deliv-
ery, such as where they will give birth, how they will reach the facility, 
and how they will pay for extra costs. 

SEVEN RECOMMENDATIONS TO SCALE 

AI is being adopted by businesses and governments eager to improve 
processes, solve problems, and create efficiencies. It is equally impor-
tant that people working on health and development issues study 
and scale up the use of causal AI. It offers a way forward with dis-
tinct advantages over purely predictive AI. Predictive models can 
provide powerful and often accurate information, such as identifying 
whether the result of a mammogram reading is likely to be a case 
of breast cancer. But causal AI can help by identifying the under-
lying web of causes of a behavior or event and furnishing critical 
insights that predictive models fail to provide, which can lead to 
more effective interventions that drive positive outcomes. Moreover, 
causal AI doesn’t operate within a black box, allowing researchers 
to check the model’s reasoning and reducing the risk of biases like 
those described earlier. 

Three converging factors indicate that causal AI’s time has come. 
First, advances in the field of AI are highlighting the many appli-
cations of causal approaches, and as models are refined, scaled up, 
and applied to novel situations, more is learned about their value 
and limitations. Second, large-scale data sets are becoming more 
readily available. Like a 4K ultra-high-definition TV that packs 
more pixels per square inch of screen than a standard-definition 

Causal AI indentifies the underlying 
web of causes of a behavior or event 
and furnishes critical insights that 
predictive models fail to provide.
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TV of old, more data makes predictions clearer and more accurate, 
and boosts confidence in the insights gleaned from causal net-
works. Finally, the health and development sectors are placing an 
increasing emphasis on precision policy—that is, coming up with 
interventions that have the strongest results, in order to deploy 
limited resources where they can have the greatest effect. Causal 
AI is ideally positioned to meet this challenge. 

The path toward successful uptake of these approaches will 
require some work. Below are seven recommendations that can 
facilitate the adoption and use of causal AI. 

Make better use of data and improve their quality. Investments 
in several large-scale data-collection efforts have been made over 
the last decade. However, these data sets are often underused and 
could be mined further to extract more insights. While we are 
seeing growth in data, other challenges remain. Data sets often 
are fragmented and vary in quality. Linking different data sets 
is also a challenge—for example, when information in one data 
set is recorded at an individual level, and in another at a regional 
or national level. Designing common indicators to be used in all 
data-collection efforts in a country would help get the best from 
data sets once they’re linked. 

Collect more comprehensive data. Applying causal AI successfully 
requires understanding all the variables that may drive behav-
iors—structural factors like policies and laws as well as individual 
beliefs, motivations, biases, and influencers. If data collection is 
done with too many prior assumptions about what’s important 
to collect, the causal variables that truly underlie behaviors or 
events may be missed and consequently lead to the wrong causal 
links being established. 

Design scalable, high-performance open-source tools for applying 

causal AI algorithms. Proprietary algorithm platforms are costly, 
making them frequently inaccessible to the health and development 
sectors. Open-sourcing makes software free, more accessible, and 
of better quality in the long run since more people can examine the 
source codes and provide feedback. Some open-source algorithms 
(such as bnlearn) are available, but their accuracy and speed need 
improvement. Practitioners who are not experts in causal AI need 
to know what steps they should follow to apply this approach in 
their area. Surgo Foundation is developing tools to lower barriers 
to entry and help organizations new to causal AI to avoid process 
pitfalls. One example is an open-source tool that evaluates whether 
a given data set is amenable to the application of Bayesian networks, 
and which algorithms are best suited to use on it. Surgo is also 
developing a workflow guide to help causal AI make the leap from 
academic research to practical use in the field.

Mix artificial intelligence with human intelligence. A purely data-
driven approach cannot solve development problems alone. Expert 
knowledge must be included throughout the process to make sure 
that researchers and program developers interpret causal networks 
correctly. Experts can improve the performance of causal AI by add-
ing constraints that reflect practical knowledge of how systems work 
on the ground and identifying whether known confounding variables 
are missing from the data. And, as the use of causal AI increases, 
ethicists and policy experts will have important roles to play to 
ensure that the approach avoids the pitfalls of bias or inaccuracy 
that have sometimes dogged the application of predictive AI models.

Improve ways to evaluate algorithm performance. Computer 
scientists are researching ways to improve the accuracy and over-
all robustness of causal AI algorithms. A typical way to evaluate 
the accuracy of causal models is to compare results against known 
causal relationships. But what should a researcher do if there are no 
known causal relationships to validate a model? (After all, discover-
ing those relationships is often the goal of performing causal AI in 
the first place.) Furthermore, what happens if the results of a causal 
AI model conflict with existing expert knowledge? One solution may 
be to generate artificial data sets with characteristics similar to a 
real data set, but with predetermined causal relationships between 
variables. Evaluating how well a causal AI model performs on an 
artificial data set can help researchers infer expected performance 
on a real data set with similar characteristics. 

Demonstrate the value of causal AI in the development sector. The 
examples we have outlined above are powerful but few in number. 
Wider awareness of the work that is being done will help spur the 
uptake of causal approaches. Surgo Foundation is using causal AI 
to understand how to optimize the performance of frontline health 
workers, how to decide which interventions we should scale up to 
improve student learning, and how to improve uptake of modern 
family planning methods. As the foundation moves forward, we are 
looking to test the application of causal AI in areas such as agricul-
ture and climate change.

Build the awareness and knowledge of key stakeholders. Causal 
AI is still a very novel concept for those outside the field. Work is 
required to explain its potential to policy makers and funders; pro-
gram managers; and monitoring and evaluation experts in the many 
sectors where causal AI could be applied, so that they understand 
these approaches, at least conceptually. 

THE NEXT LOGICAL STEP

In order to make sense of the world, humans take account of and 
analyze repeating patterns. We have come a long way from creating 
mythologies for explaining the weather to using rigorous data col-
lection and mathematical modeling to predict the next rainfall or 
hurricane path. But we continually run up against the limits of what 
we are able to observe and the methods available to analyze our data. 

Causal AI is the next logical step, made feasible by recent techno-
logical transformations and the increasing pervasiveness of data. Its 
advantage over some other disciplines in the social sciences—and 
indeed over predictive AI—is that it can help identify the precise causal 
factors that directly lead to particular behaviors or outcomes, and it 
can efficiently test different approaches to changing those behaviors 
or outcomes. This edge enables researchers and practitioners to focus 
on the best mix of interventions for addressing some of today’s most 
critical issues, from climate change to health care. Better causal infer-
ences will help programs do more with fewer resources and waste 
less time doing it. And by integrating causal AI with human exper-
tise, programs can avoid the mistakes that arise when people—or the 
machines or software that they create—ignore crucial context or fall 
into the trap of mistaking correlation for causation.

Ultimately, knowing the “why” behind complex problems helps 
us to understand how the world really operates and, in turn, to 
identify the right actions to achieve desired outcomes. We may yet 
find that an ounce of causal AI is worth a pound of prediction. n
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